Innenwinkelsumme im Dreieck – ein “handfester” Beweis

Wie können wir helfen?

Du befindest dich hier:

Dieses rote Dreieck steht allgemein für ein Dreieck ohne besondere Eigenschaften. Deswegen muss man bei der folgenden Argumentation darauf achten, dass von keiner speziellen Eigenschaft des konkreten Dreiecks Gebrauch gemacht wird.

So können wir in jedem Dreieck die drei Winkel mit α, β und γ bezeichnen. Anschließend können wir die Seitenmittelpunkte der Seiten AC und BC  zu einer Seitenhalbierenden des Dreiecks verbinden. A ist der Eckpunkt zum Winkel α, B der Eckpunkt zum Winkel β und C der Eckpunkt zum Winkel γ. Unser rotes Holzdreieck ist an der Seitenhalbierenden umklappbar.

Durch das Umklappen des Dreiecks (rot) kommt die obere Ecke C des Ausgangsdreiecks auf dessen Grundlinie zu liegen. Es entstehen zwei gleichschenklige Dreiecke (blau). Da in jedem gleichschenkligen Dreieck die beiden Basiswinkel gleichgroß sind (Symmetrie!), erkennt man unmittelbar, dass α + β + γ = 180° richtig ist. Da unsere Überlegungen offensichtlich für jedes beliebige Dreieck zutreffend sind, gilt der Innenwinkelsatz, dass die Summe der drei Innenwinkel 180° beträgt, für jedes beliebige Dreieck.

Solches Vorgehen, eine Beweisargumentation anhand eines Beispiels zu führen, ist nur dann ein gültiger Beweis, wenn an keiner Stelle eine besondere Eigenschaft des Beispiels herangezogen wurde. Andernfalls gilt – wie schon an vielen Stellen gesagt – dass noch so viele richtige Beispiele kein Beweis der allgemeinen Behauptung sind.

Was wir oben in unserer Argumentation unerwähnt benutzt haben ist die Voraussetzung, dass die Seitenhalbierende und die Dreiecksseite AB parallel sind. Das ist in der euklidischen Geometrie auch vollkommen richtig. Auf einer Kugeloberfläche ist es das aber nicht. Die logische Konsequenz daraus ist, dass der obige Innenwinkelsatz auf der Erdoberfläche nicht gilt. Man betrachte dazu beispielsweise ein Dreieck mit dem Nordpol, dem Schnittpunkt des 0. Längengrades mit dem Äquator und dem 90. Längengrad ö. L. mit dem Äquator.

Zur Veranschaulichung dieser nicht-euklidischen Situation in der elliptischen Geometrie ist der kleine runde Ball in acht kongruente Dreiecke eingeteilt worden. Jedes dieser Dreiecke hat eine Innenwinkelsumme von 270°

Die kleinen schwarzen Dreiecke auf dem unteren Teil des Weißbierglases veranschaulichen eine zweite nicht-euklidische Geometrie, die hyperbolische Geometrie, in der die Innenwinkelsumme in einem Dreieck weniger als 180° beträgt!

 

Schlagwörter:

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

17 + 17 =